Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 3071, 2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33542470

RESUMO

Time-Of-Flight (TOF) methods are very effective to detect particles accelerated in laser-plasma interactions, but they show significant limitations when used in experiments with high energy and intensity lasers, where both high-energy ions and remarkable levels of ElectroMagnetic Pulses (EMPs) in the radiofrequency-microwave range are generated. Here we describe a novel advanced diagnostic method for the characterization of protons accelerated by intense matter interactions with high-energy and high-intensity ultra-short laser pulses up to the femtosecond and even future attosecond range. The method employs a stacked diamond detector structure and the TOF technique, featuring high sensitivity, high resolution, high radiation hardness and high signal-to-noise ratio in environments heavily affected by remarkable EMP fields. A detailed study on the use, the optimization and the properties of a single module of the stack is here described for an experiment where a fast diamond detector is employed in an highly EMP-polluted environment. Accurate calibrated spectra of accelerated protons are presented from an experiment with the femtosecond Flame laser (beyond 100 TW power and ~ 1019 W/cm2 intensity) interacting with thin foil targets. The results can be readily applied to the case of complex stack configurations and to more general experimental conditions.

2.
Opt Lett ; 45(19): 5575-5578, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33001957

RESUMO

The interaction of an ultra-intense laser with a solid state target allows the production of multi-MeV proton and ion beams. This process is explained by the target normal sheath acceleration (TNSA) model, predicting the creation of an electric field on the target rear side, due to an unbalanced positive charge. This process is related to the emission of relativistic ultrafast electrons, occurring at an earlier time. In this work, we highlight the correlations between the ultrafast electron component and the protons by their simultaneous detection by means of an electro-optical sampling and a time-of-flight diagnostics, respectively, supported by numerical simulations showing an excellent agreement.

3.
Opt Lett ; 45(16): 4420-4423, 2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32796973

RESUMO

High-intensity ultrashort laser pulses interacting with thin solid targets are able to produce energetic ion beams by means of extremely large accelerating fields set by the energetic ejected electrons. The characterization of such electrons is thus important in view of a complete understanding of the acceleration process. Here, we present a complete temporal-resolved characterization of the fastest escaping hot electron component for different target materials and thicknesses, using temporal diagnostics based on electro-optical sampling with 100 fs temporal resolution. Experimental evidence of scaling laws for ultrafast electron beam parameters have been retrieved with respect to the impinging laser energy (0.4-4 J range) and to the target material, and an empirical law determining the beam parameters as a function of the target thickness is presented.

4.
Phys Rev E ; 100(5-1): 053202, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31869917

RESUMO

In this paper, we show how plasma discharge capillaries can be numerically modeled as resistors within an RLC-series discharge circuit, allowing for a simple description of these systems, while taking into account heat and radiation losses. An analytic radial model is also provided and compared to the numerical model for plasma discharge capillaries at thermal equilibrium, with corrections due to radiation losses. Finally, diagnostic techniques based on visible spectroscopy of plasma emission lines are discussed both for atomic and molecular gases, comparing experimental results with numerical simulations and theoretical calculations.

5.
Phys Rev Lett ; 122(11): 114801, 2019 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-30951354

RESUMO

The development of compact accelerator facilities providing high-brightness beams is one of the most challenging tasks in the field of next-generation compact and cost affordable particle accelerators, to be used in many fields for industrial, medical, and research applications. The ability to shape the beam longitudinal phase space, in particular, plays a key role in achieving high-peak brightness. Here we present a new approach that allows us to tune the longitudinal phase space of a high-brightness beam by means of plasma wakefields. The electron beam passing through the plasma drives large wakefields that are used to manipulate the time-energy correlation of particles along the beam itself. We experimentally demonstrate that such a solution is highly tunable by simply adjusting the density of the plasma and can be used to imprint or remove any correlation onto the beam. This is a fundamental requirement when dealing with largely time-energy correlated beams coming from future plasma accelerators.

6.
Phys Rev Lett ; 121(17): 174801, 2018 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-30411933

RESUMO

Plasma-based technology promises a tremendous reduction in size of accelerators used for research, medical, and industrial applications, making it possible to develop tabletop machines accessible for a broader scientific community. By overcoming current limits of conventional accelerators and pushing particles to larger and larger energies, the availability of strong and tunable focusing optics is mandatory also because plasma-accelerated beams usually have large angular divergences. In this regard, active-plasma lenses represent a compact and affordable tool to generate radially symmetric magnetic fields several orders of magnitude larger than conventional quadrupoles and solenoids. However, it has been recently proved that the focusing can be highly nonlinear and induce a dramatic emittance growth. Here, we present experimental results showing how these nonlinearities can be minimized and lensing improved. These achievements represent a major breakthrough toward the miniaturization of next-generation focusing devices.

7.
Opt Express ; 26(4): 5075-5082, 2018 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-29475349

RESUMO

Transition and diffraction radiation from charged particles is commonly used for diagnostics purposes in accelerator facilities as well as THz sources for spectroscopy applications. Therefore, an accurate analysis of the emission process and the transport optics is crucial to properly characterize the source and precisely retrieve beam parameters. In this regard, we have developed a new algorithm, based on Zemax, to simulate both transition and diffraction radiation as generated by relativistic electron bunches, therefore considering collective effects. In particular, unlike other previous works, we take into account electron beam physical size and transverse momentum, reproducing some effects visible on the produced radiation, not observable in a single electron analysis. The simulation results have been compared with two experiments showing an excellent agreement.

8.
Sci Rep ; 8(1): 3243, 2018 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-29459758

RESUMO

The interaction of high-power ultra-short lasers with materials offers fascinating wealth of transient phenomena which are in the core of novel scientific research. Deciphering its evolution is a complicated task that strongly depends on the details of the early phase of the interaction, which acts as complex initial conditions. The entire process, moreover, is difficult to probe since it develops close to target on the sub-picosecond timescale and ends after some picoseconds. Here we present experimental results related to the fields and charges generated by the interaction of an ultra-short high-intensity laser with metallic targets. The temporal evolution of the interaction is probed with a novel femtosecond resolution diagnostics that enables the differentiation of the contribution by the high-energy forerunner electrons and the radiated electromagnetic pulses generated by the currents of the remaining charges on the target surface. Our results provide a snapshot of huge pulses, up to 0.6 teravolt per meter, emitted with multi-megaelectronvolt electron bunches with sub-picosecond duration and are able to explore the processes involved in laser-matter interactions at the femtosecond timescale.

9.
Sci Rep ; 6: 35000, 2016 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-27713541

RESUMO

Highly energetic electrons are generated at the early phases of the interaction of short-pulse high-intensity lasers with solid targets. These escaping particles are identified as the essential core of picosecond-scale phenomena such as laser-based acceleration, surface manipulation, generation of intense magnetic fields and electromagnetic pulses. Increasing the number of the escaping electrons facilitate the late time processes in all cases. Up to now only indirect evidences of these important forerunners have been recorded, thus no detailed study of the governing mechanisms was possible. Here we report, for the first time, direct time-dependent measurements of energetic electrons ejected from solid targets by the interaction with a short-pulse high-intensity laser. We measured electron bunches up to 7 nanocoulombs charge, picosecond duration and 12 megaelectronvolts energy. Our 'snapshots' capture their evolution with an unprecedented temporal resolution, demonstrat- ing a significant boost in charge and energy of escaping electrons when increasing the geometrical target curvature. These results pave the way toward significant improvement in laser acceleration of ions using shaped targets allowing the future development of small scale laser-ion accelerators.

10.
Opt Express ; 24(26): 29512-29520, 2016 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-28059338

RESUMO

The interaction of a high-intensity short-pulse laser with thin solid targets produces electron jets that escape the target and positively charge it, leading to the formation of the electrostatic potential that in turn governs the ion acceleration. The typical timescale of such phenomena is on the sub-picosecond level. Here we show, for the first time, temporally-resolved measurements of the first released electrons that escaped from the target, so-called fast electrons. Their total charge, energy and temporal profile are provided by means of a diagnostics based on Electro-Optical Sampling with temporal resolution below 100 fs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...